Adiabatic Quantum Simulation of Quantum Chemistry
نویسندگان
چکیده
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
منابع مشابه
Implementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage
We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...
متن کاملSimulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser
In this paper, the nonlinear rate equations governing a quantum dot laser isused to simulate the transient as well as the steady-state behaviors of the laser.Computation results show that the rate equations are capable of simulating true behaviorof a quantum dot laser. Then, the pump rates of the rate equations (which show indirectelectrical pumping of the quantum dots through a wetting layer) ...
متن کاملInvestigating the Effect of Fullerene on the Basicity of Paraphenylenediamine by using the Quantum Chemistry Methods
In this study, paraphenylenediamine was first bonded to the fullerene and was optimized geometrically by Using the quantum chemistry methods. paraphenylenediamine was examined in the isolated state and in the fullerene-bonded state via carbon atoms. In the theoretical research, the simulation was done by the Gauss View software. Then, the bonding orbital calculation was done by using the NBO me...
متن کاملTheoretical study for evaluation of corrosion inhibition performance of two thiocarbohydrazide inhibitors
Molecular dynamics (MD) simulation and Density functional theory (DFT) methods were applied to the two thiocarbohydrazides derivatives (T1 and T2) as corrosion inhibitors for carbon steel in aqueous phase. Experimental results have shown that the corrosion rate follows the below order: T1>T2. Quantum chemical parameters such as hardness (η), electrophilicity (ω),polarizability (α), dipole momen...
متن کاملA Correlation for the Prediction of the Adiabatic Joule-Thomson Coefficient of Pure Gases and Gas Mixtures
A correlation based on the general form of cubic equations of state has been derived. This equation provides a convenient mathematical form of the Joule-Thomson coefficient in terms of the state variable V and T. The Joule-Thomson coefficient calculated by this correlation has been compared with experimental data. It has been shown that the Redilich-Kwang equation of state is a suitable equ...
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کامل